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Abstract: - The case of the Sampling-Reconstruction Procedure of Gaussian process realizations is investigated 

when a priori information about some parameters of a given process is unknown. The general case with 

unknown expectation, variance and covariance function is considered. The unknown parameters are estimated 

on the base of the received set of samples. In result we have some adaptive algorithms. The method of the 

investigation is founded on the mathematical simulations. The results of the investigation demonstrate that the 

covariance function has the great influence on the main characteristics of the Sampling-Reconstruction 

Procedure. So the measurement of the covariance function is the most important operation in the adaptive 

algorithms. 
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1 Introduction 

In signal processing, the problem of a statistical 

description of Sampling - Reconstruction Procedure 

(SRP) of random process is very important. The 

classic theorem was proposed mainly by 

Whittacker, Kotelnikov and Shannon, which is also 

known as WKS theorem. This theorem is valid only 

for deterministic processes.  

In 1957, Balakrishnan [1] generalizes the WKS 

theorem for realizations of stationary random 

processes with restricted power spectrum. There are 

many publications devoted to these problems (see 

for example [2], [3]).  

Balakrishnan´s theorem and its generalizations 

have some disadvantages in the description of 

Sampling – Reconstruction Procedure (SRP) of 

random process realizations: 1) reconstruction 

function is linear and the same for all types of 

random processes, 2) the probability density 

function is not used, 3) the number of samples must 

be infinite, 4) reconstruction error equal to zero, and 

5) the both principal SRP characteristics (the 

reconstruction function and the reconstruction error 

function) do not depend on the probability density 

function, on a covariance function or on a type of 

power spectrum. 

To overcome these disadvantages and to 

demonstrate the influence of the above mentioned 

reasons to the SRP, we need to apply a different 

methodology for the description of SRP problem. 

This methodology is based on the Conditional 

Expectation Rule (CER) (see for instance [4]). The 

first application of this rule for the statistical 

description of SRP has been published in [5]. This 

methodology has been used in many publications 

(see for example [6] - [14] and the literature cited 

within). SRP of realization of many types random 

processes have been investigated on the basis of 

CER. For each type of process optimal 

reconstruction algorithm and error reconstruction 

function were obtained. But we have to emphasize 

that all mathematical models of random processes 

are completely described, or in other words all 

statistical characteristics of these processes were 

known. 

In practice, the statistical description of random 

processes may not be complete. In these cases one 

or some parameters of the given process are 

unknown. Such problem is known as a priory 

information problem. To solve such SRP problem it 

is necessary to measure these parameters using the 

set of samples. With any next arrived sample the 

measurement results must be entered into the 

formula instead of the actual parameter value. The 

measurement results are changed with each step, so 

the SRP must have a non-stationary character. 

Meantime the sampled realization can be taken from 

the stationary random process. This is a special 

property of the problem. Such algorithms are called 

as adaptive algorithms.  
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The main goal of the present paper is connected 

with the investigation of the transition regimes in 

the adaptive SRP algorithms of various types. We 

demonstrate that the measurement of the covariance 

function is the most important operation in the 

algorithms under consideration. 

The rest of the paper is organized as follows. In 

Section II, we describe the main features of the 

deterministic algorithm when the Gaussian process 

is completely known. A brief description of the 

proposed method for unknown parameter estimation 

is given in Section III. Section VI describes the 

adaptive algorithm for a simple case when the 

mathematical expectation is unknown. The general 

adaptive algorithm is described in Section V when 

all parameters are unknown. The results are given in 

sections VI, VII and VIII, respectively, when the 

mathematical expectation, the variance and the 

covariance moment is unknown. Finally, Section IX 

concludes this paper. 

 

 

2 Main Features of the Deterministic 

Algorithm 

Let us suppose that the statistical description of the 

given Gaussian process is completely known. 

Generally, this process is not stationary. Then, all 

parameters (the mathematical expectation m t , the 

variance 2 ( )t  and the covariance function K(t1, t2)) 

are known. In addition, the set of samples 

X,T={x(T1), x(T2), …, x(TN)} must be known as 

well. The locations of samples and their number N 

are arbitrary. In this case the reconstruction function 

,m t X T m t  or the conditional expectation is 

expressed by the formula [15]:  

,
N N

i ij j j

i j

m t m t K t T a x T m T  (1) 

where 
ija is an element of the inverse covariance 

matrix of the process.  

The elements 
ija  are calculated for the sample 

times Ti,Tj. The error reconstruction function or the 

conditional variance function is characterized by the 

formula [10]: 

2 2 , ,
N N

i ij j

i j

t t K t T a K T t . (2) 

When the given process is stationary, the 

formulas (1) and (2) are simplified: 

N N

i ij j

i j

m t m K t T a x T m , (3) 

2 2
N N

i ij j

i j

t K t T a K T t . (4) 

Let assume: 

m=0,    
2
=1. (5) 

Then, instead of (3), (4) we have 
N N

i ij j

i j

m t K t T a x T , (6) 

2 1
N N

i ij j

i j

t R t T a R T t , (7) 

here R(∙)=
−2

K(∙) is the normalized covariance 

function. 

From (1) – (7) one can see two remarkable 

points: 1) the reconstruction functions (1), (3) and 

(6) are linear functions with respect to received 

samples; 2) in all cases (2), (4) and (7) the 

conditional variance does not depend on sample 

values, but depends on the location of these 

samples. 
 

 

3 Expressions for Unknown 

Parameter Estimation 

Below we consider the variant when the covariance 

function is unknown. In this case we need to 

estimate this parameter. We use a simple method to 

obtain the expected result. We introduce "k" to 

designate the number of samples, which are 

involved in the operation of the parameter 

estimation. It is necessary to emphasize that the 

values N and k are generally different. Equality k=N 

can be, in the particular case, when all samples 

involved in the realization reconstruction. This case 

is theoretical. Usually N ˂  k , for example, in the 

Markov case N=2, but the value k may have a big 

number. We write the desired well known formulas. 

The estimate of the expected value: 

1

1
ˆ .

k
k

l

l

m x T
k

 (8) 

The estimation of the variance: 

22

1

1

1

kk

l

l

x T m
k

 (9) 

The estimate of the normalized covariance 

moment 
k

R p T  with a discrete argument 

p T ( 1,2,...p ) is: 

2
1

1 1 kk

l l p

l

R p T x T m x T m
k

. (10) 

where T is a constant given by T=T i−T i-1. 
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4 Adaptive Algorithm for a Simple 

Case 

Let us suppose that the unknown parameter is the 

mathematical expectation m of the stationary 

process. We estimate it by the formula (8). At each 

step k we have a different value of the mathematical 

expectation 
k

m . It is necessary to insert 
k

m in the 

formula (3) instead of the value m for the 

conditional expectation. Then the new function that 

describe the reconstruction depends on 
k

m , i.e.: 

.

N Nkk

i ij

i j

k

j j

m t m K t T a

x T m T

 (11) 

It is clear that 

( )
k

m t m t . (12) 

This fact is the source of another part of the 

reconstruction error. Let's call this as "an additional 

error" and emphasize that this error is a conditional 

function with respect to the set of samples X, T. 

Taking into account this fact, we write the instant 

mistake k
t : 

kk
t x t m t  (13) 

here ,x t x t X T  is the realization of the 

conditional process. 

Let us square both parts of (13) and calculate the 

statistical average operation using a conditional 

probability density function. In result we have the 

general formula of the reconstruction error: 

2
2 kk

t x t m t . (14) 

The first term of the right part of (14) is: 

22 2x t m t . (15) 

Taking into account (15) one can write (14) in 

the form: 

2

2
2 kk

t t m t m t . (16) 

The expression (16) involves two parts: the first 

is the usual conditional variance [see (2), (4), (7)], 

the second part is the additional reconstruction error 

occurred in the result of the inequality (12).  

The main goal of the present work is connected 

with the investigation of the additional part in (16). 

We designate this as: 

22
kk

t m t m t . (17) 

It is clear, when k→∞ the value 
k

m t m t . 

Finally, the additional error tends to zero and the 

reconstruction error will be determined by the 

conditional variance only. 

One can remind that the conditional variance (or 

the usual error reconstruction function) does not 

depend on the values X,T of samples, but the 

additional error function (17) depends on values of 

samples. So, we need to calculate this part of the 

total error with the base of the set of samples X, T, 

which must be taken from a simulated realization. 
 

 

5 The General Adaptive Algorithm  

The formulas (11) - (17) can be modified for the 

general case, when all three parameters of a given 

Gaussian process are unknown: the mathematical 

expectation, variance and normalized covariance 

function. Again, on the basis of a sample set and 

formulas (8) - (10) we need to find the estimations 

of these parameters. Then introducing these 

estimations in the correspondent formulas, one can 

obtain the reconstruction function and the 

reconstruction error function in the transition 

regime. 

Now instead of (11) we have: 

2 2ˆˆ; , ,

ˆ ˆ .

N Nk kk k
k k

i j

k
k k

i ij j j

m t m R m

R t T a x T m T

 
(18) 

In (18) the elements of the inverse covariance 

matrix ˆ k

ija depend on the number of step k by two 

factors: the estimation of the variance and the 

estimation of the normalized covariance moment. It 

is clear, because each estimated element of the 

covariance matrix is determined by the following 

formula: 

2ˆ ˆ
k

k k

i j i jK T T R T T . (19) 

Once again, because the reconstruction function 

(18) does not coincide with the ideal reconstruction 

function, an additional error is occurred. By analogy 

with (17) we write: 
2

2

2

2

ˆˆ; , ,

ˆˆ; , , .

k
k k k

k
k k k

t m R

m t m t m R

 
(20) 
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Then the total reconstruction error function is 

written in the form:  

2 2

2

2 ˆˆ; , , .

k

k
k k k

t t

t m R

 (21) 

The formulas (18) - (21) are more general in the 

description of the adaptive SRP. It is clear that the 

mentioned formulas (18) - (21) can be rewritten for 

many variants, when one or two parameters are 

unknown. Again we notice, when the number k of 

samples participated in the parameter estimation is 

increased, the result of the estimation tends to the 

true value. Then the additional error should be 

decreased to zero. Below we will investigate 

adaptive algorithms for the Markovian Gaussian 

process. In this case the number of samples involved 

in the reconstruction operation equals two. The 

algorithms for the simulation of random process 

realizations are not discussed here. We notice some 

parameters of simulated realization only: m=0, 
2
=1 and c=1 ( c is the covariance time).  

 

 

6 The Mathematical Expectation is 

Unknown 

Essential formulas for this variant are given in 

section 4. In Fig. 1 and Fig. 2 graphs show the 

modulus of the difference between two 

reconstruction functions: 1) the mathematical 

expectation m t  and 2) the estimated 

reconstruction function 
k

m t .  

 

 
Fig. 1 

 

For the sake of simplification, the calculations 

were fulfilled in the middle of the sampling intervals 

T. Curves are presented for different sampling 

intervals. In Fig 1 we have functions of time t. In 

Fig 2 the graphs have the argument number k.   

One can notice that all curves in Fig. 1 – Fig. 3 

illustrate a natural effect: when time t (or the step 

number k) increases, the additional error decreases.  

 

 
Fig. 2 

 
But there is another very important point: the 

values of the additional error values are very tiny in 

comparison with a usual reconstruction error (the 

conditional variance). Actually maxima error in the 

middle of the sampling interval t=T/2 is 

characterized by the following values [7]:  

2
max

2
max

2
max

2
max

0.2, / 2 0.1;

0.4, / 2 0.2;

0.6, / 2 0.29;

0.8, / 2 0.38.

T T

T T

T T

T T

 
(22) 

Meantime the additional error is described by 

values very small (see the ordinate scale in Fig. 3. 

 

 
Fig. 3 
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7 The Variance is Unknown 

In order to calculate the case with unknown 

variance, it is necessary to use the general formulas 

(18) – (21) from section 4 with some changes. 

Namely, the upper index k must be omitted in all 

designations except the variance 2
k

t , because 

other parameters are known. We do not write 

corresponding expressions, but give the calculation 

results of the additional error ( )k t  (see Fig. 4).  

 

 
Fig. 4 

 

In Fig. 4, there are some curves for different 

values of sampling interval T. The curves have been 

obtained on the values of errors in the middle of 

sampling intervals. 

One can notice that all broken curves tend to 

zero when the analysis time increases. Once again, 

one can make the conclusion: the additional error 

(see the ordinate scale in Fig. 4) is very small with 

comparison of the usual error (see the ordinate scale 

in Fig. 4 and the values in (22)). 

 

 

8 The Covariance Moment is 

Unknown 

The formulas (18) - (21) can be concretized for the 

general case. Let us suppose that the type of 

covariance function is known. In our case this type 

is exponential. Then, it is sufficient to estimate the 

covariance moment between two random variables, 

divided by several sampling intervals. (This is the 

reason that we estimate the covariance moment, but 

not the covariance function.) Then in general in 

formulas (18) - (21) we have to keep the index k for 

the covariance moment ˆ k
R  only, because other 

parameters must be known. Simulation results are 

shown in Fig. 5 and Fig. 6. 

Let us consider Fig. 5. Here there are four 

curves. They illustrate the transition regimen of the 

estimation of the covariance for various sampling 

intervals, when time increases. In all cases, the 

results of the estimation tend to the exact value of 

the covariance moment for the sampling interval T 

under consideration. When the sampling interval is 

small, the covariance moment is large and vice 

versa. 
 

 
Fig. 5 

 

In Fig. 6 graphs of total errors 2
k

t  (see 

the expression (21)) are presented. But for the sake 

of simplification, instead of the function 2 t we 

chose the constant 2 2 / 2t T . These values 

are marked by T =0.2, 0.4, 0.6 and 0.8. All curves 

show that the additional error tends to zero, when 

the observation time interval (or the number k) 

increases. The transition interval duration is not 

constant, because the sampling intervals T are 

different. Meantime the number of samples k within 

the transition interval duration is nearly equal for all 

curves. 
 

 
Fig. 6 
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Here we notice one specific feature of graphs in 

Fig. 2. In fact, all curves (especially during the 

initial part of transition interval) have values 

compared with the correspondent value 
2 2

max / 2t T .  

There is not such effect in two above 

investigated variants: the mathematical expectation 

(section 6) and variance are unknown (section 7). 

This effect means that the information lack 

about the covariance moment provokes 

additional errors larger compared with the other 

variants, investigated above. Generally, it can be 

said that the adaptive algorithm for the covariance 

function (or particularly the covariance moment) 

plays a major role in adaptive algorithms SRP of 

Gaussian processes. This conclusion is valid for the 

SRP of non Markovian processes also. 

 

 

9  Conclusions 

The investigation method of adaptive algorithms in 

the description of SRP of realization of Gaussian 

processes is suggested. The general formulas are 

obtained. The method is illustrated by realizations of 

Markovian process. The practical recommendation 

is: among three unknown principal parameters the 

lack of the information about the covariance 

function plays the grand role in the adaptive SRP 

algorithms of Gaussian processes. 
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